Course Title: Determining Intensity with Aquatic Target Heart Rates

Produced by: Fitness Learning Systems

1012 Harrison Ave \#3 Harrison OH 45030
www.fitnesslearningsystems.com 1-888-221-1612
Course Type: e-Learning Home Study
Credit hours: AEA 2.0, ACSM 2.0, ATRI 0.2, NFPT 1.0, NCSF 1.0, YMCA 2.0, NSPA 2.0

Author/s:

Aquatic Exercise Association
Information Compiled by: June M. Chewning, BS, MA
Aquatic Exercise Association Research Committee
June M. Chewning has taught a variety of fitness classes since 1978, and has been presenting educational health/ wellness lectures and fitness classes to corporations, the community, and fitness professionals since 1985 both in the U. S. and Internationally. June serves on the Aquatic Exercise Association Research Committee, is recipient of the AEA 1995 Achievement Award, and 2001 Contribution to the Aquatic Fitness Industry Award. She serves as adjunct faculty for Cincinnati State College, developing and teaching several courses for the Health Fitness Technician degree program. She is President of Fitness Learning Systems, a CEC education company. She specializes in educational formatting and programming.

Course Summary:

This course provides evidence based methodology and practice for aquatic heart rate deductions. Generally accepted equations and methods are provided with explanations and practice equations. After completing this course you will be able to determine and apply aquatic target heart rates for safe and effective exercise intensity.

Objectives:

After completing this course you will:

1. Know definitions for heart rate terms.
2. Learn how to calculate a maximum heart rate using the Standard HR Equation and the Gellish Equation.
3. Learn how to calculate a target heart rate intensity using the Percentage of Maximum Heart Rate formula and the Karvonen formula.
4. Understand the use of Rate of Perceived Exertion in measuring exercise intensity.
5. Know the theory and causes for aquatic heart rate responses.
6. Learn the evolution of aquatic heart rate deductions.
7. Learn the Kruel Protocol for Individualized Heart Rate Deductions.
8. Learn, understand, and practice 2 methods for determining aquatic target heart rates.
9. Understand how to measure and interpret aquatic heart rates.
10. Practice equations for maximum heart rate and target heart rate for both land and water

Outline:

Monitoring Exercise Intensity
Definitions for Heart Rate Terms
Optional link: Heart Rate 101
Heart Rate Methods
Heart Rate Reserve Method (HRR)
Methods for Determining Maximum Heart Rate
Practicing HRmax Equations
Optional Link: Math Primer Review
Practicing the Heart Rate Reserve (Karvonen) Formula
Percentage of Maximal Heart Rate (HRmax) Method
Practicing the Percentage of Maximal Heart Rate (HRmax) Method Rate of Perceived Exertion (RPE)

Aquatic Heart Rate Reponses

Aquatic Heart Rate Evolution
New Evidence for Aquatic Heart Rates
Aquatic Target Heart Rates
Determine the Numbers
Part 1
Optional Link: Maximum Heart Rate Equation Review
Part 2
Part 3
Option 1
Option 2
Definitions for Aquatic Heart Rates
HR Palpitation Protocol
Kruel Individualized Aquatic Heart Rate Formula
Sample Equations
Kruel Aquatic HR Deduction: Percentage of Maximum HR Formula
Kruel Aquatic HR Deduction: Karvonen Formula
Gellish Formula for Maximum HR
Measure and Interpret
Summary Outline
Sample Calculations

Bibliography:

1. Alberton CL, Tartaruga LAP, Turra NA, Müller FG, Petkowicz R, and Kruel LFM. (2002) Efeitos do peso hidrostático na freqüência cardíaca durante imersão no meio aquático. In: Salão De Iniciação Científica, 14, Porto Alegre. Livro de Resumos. Porto Alegre: UFRGS, p. 518.
2. 2001. ACSM's Resource Manual for Guidelines for Exercise Testing and Prescription. 4th edition. Roitman, JL. Lippincott Williams \& Wilkins.
1. American College of Sports Medicine (2010) ACSM's Guidelines for Exercise Testing and Prescription. Lippincott, Williams, and Wilkins.
2. American College of Sports Medicine (2006) ACSM's Guidelines for Exercise Testing and Prescription. Lippincott, Williams, and Wilkins.
3. Aquatic Exercise Association. (2010) Aquatic Fitness Professional Manual. Human Kinetics, Champaign IL.
4. Barretta R. (1996) Understanding Water Exercise Target Heart Rate. AKWA August/September. Pgs. 10-11.
5. Chewning, JM. Author Articles. Water Immersion. Retrieved August 8, 2011, from http://www.fitnesslearningsystems.com/116767/124867.html
6. Chewning J, Krist P, and Figueiredo P. (2009). Monitoring Your Aquatic Heart Rate: Increasing Accuracy with the Kruel Aquatic Adaptation. Extracted September 2011. http://www.aeawave.com/PublicPages/Research/ResearchResources.aspx
7. Coertjens M, Dias ABC, DaSilva RC, Rangel acb, Peyre Tartaruga IA, and Kruel LFM. (2005) Determination of bradycardia during upright immersion in the water. AEA Aquatic Fitness Research Journal. 2(1): Abstract
8. Figueiredo PAP, Coerjents M, Kruel LFM. (2005) Behavior of heart rate during vertical immersion in the water and practical application. AEA Aquatic Fitness research Journal 2(1): 3-6.
9. Gelish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sport Exer. 39(5):822-9.
10. Heart Monitors.com. Heart Rate 10: Got questions about heart rate? We've got answers! Retrieved 8/2011 from:
http://www.heartmonitors.com/exercisetips/heart_rate_basics.htm
11. Heyward V. (2006) Advanced Fitness Assessment and Exercise Prescription. 6th edition. Human Kinetics, Champaign IL.
12. Kruel LFM., Peyré-Tartaruga LA, Alberton CL, Müller FG, and Petkowicz R. (2009) Effects of hydrostatic weight on heart rate during immersion. International Journal of Aquatic Research Education; 3:178-175.
13. Kruel LFM, Peyre-Tartaruga LA, Dias ABC, Da Silva RC, Picanco, PSP and Rangel, AB. (2005) Heart Rate During Water Immersion. AEA Aquatic Fitness research Journal 2(1): Abstract.
14. Kruel, LFM, Tartaruga, LAP, Dias, AC, Silva RC, Picanco PS P, and Rangel AB. (2002) Freqüência Cardíaca durante imersão no meio aquático. Fitness e Performance. 1(6): 46-51.
15. Kruel, L.F.M. (1994). Peso Hidrostático e Freqüência Cardíaca em Pessoas Submetidas a Diferentes Profundidades de Ã gua. Dissertação de Mestrado. Universidade Federal de Santa Maria. Santa Maria.
16. McArdle W., Glasner R. and Magel J. (1971). Metabolic and cardio-respiratory responses during free swimming and treadmill walking. Journal of Applied Physiology. 33 (5) 733-738.
17. Roitman, JL. (2001) ACSM's Resource Manual for Guidelines for Exercise Testing and Prescription. 4th edition. Lippincott Williams \& Wilkins.
18. Sova, R. (1991). Aquatics: The Complete Reference Guide for Aquatic Fitness Professionals. Jones and Bartlett, Boston.
19. Stapel, E. The Order of Operations: PEMDAS. Retrieved August 31, 2011 from http://www.purplemath.com/modules/orderops.htm
20. Wilmore JH and Costill DL (2004) Physiology of Sport and Exercise. 3rd edition. Human Kinetics, Champaign IL.
